

(1) ADG: Automotive and Discretes Group

PCN Product/Process Change Notification New assembly and test line qualification for Rectifiers housed in PowerFLAT[™] 5x6 package Notification number: ADG-DIS/19/11262 **Issue Date** 18/02/2019 Aline AUGIS Issued by Product series affected by the change FERD15S50DJF-TR FERD20U50DJF-TR FERD30SM100DJF-TR STPS30120DJF-TR STPS30170DJF-TR STPS3045DJF-TR STPS30M100DJF-TR Type of change **Back-end realization** Description of the change Qualification of a back-end subcontractor located in China (location B) for the assembly and test and finishing of Rectifiers products in PowerFLAT[™] 5x6. The production currently located ST Shenzhen in China (location A) will be extended with subcontractor in China (location B) for Rectifiers products in PowerFLAT[™] 5x6. This subcontractor in China (Location B) is already a major production site for ST products (FERD, Power Schottky and Ultrafast diodes technologies), including PowerFLAT[™] 5x6 package (with different pin configuration). **Reason for change** STMicroelectronics investment on Rectifiers production capacity increase. Former versus changed product: The changed products do not present modified electrical or thermal parameters. The Moisture Sensitivity Level of the part (according to the IPC/JEDEC JSTD-020D standard) remains unchanged. There is no change in the packing modes and the standard delivery quantities either. The products remain in full compliance with the ST ECOPACK®2 grade ("halogen-free"). Package dimensions in datasheets will be updated to cover location A and location B.

STMicroelectronics ADG – Discrete and Filter Division¹ BU Rectifiers

(1) ADG: Automotive and Discretes Group

Disposition of former products

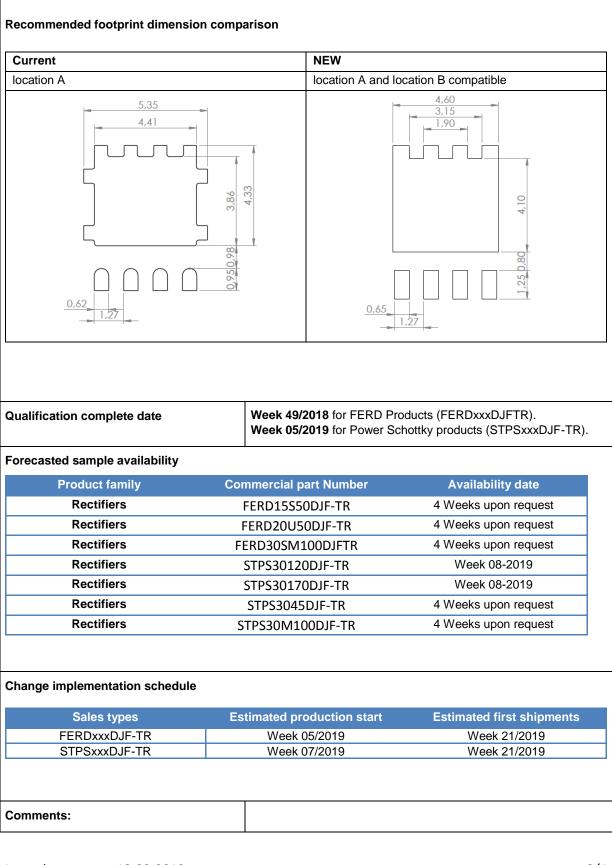
For FERD Products (FERDxxxDJFTR), the production in location A will ramp down until April 2019. For Power Schottky products (STPSxxxDJF-TR), shipments will be supported using the two production lines.

Marking and traceability:

The product code marking is the same between plant A and B. Traceability of the Back End plant will be ensured by an internal codification (Finished Good) and by the trace code (printed on device top side and on the carton box label). The first two digits of the trace code indicate the back-end plant origin.

LOCATION A (example of marking)

LOCATION B (example of marking)



Commercial Product	LOCATION A	LOCATION B	MARKING	
Commercial Product	Finished Good	Finished Good	WARKING	
FERD15S50DJF-TR	FERD15S50DJFTR/7	FERD15S50DJF/B	FD15 S50	
FERD20U50DJF-TR	FERD20U50DJFTR/7	FERD20U50DJF/B	FD20 U50	
FERD30SM100DJFTR	FERD30SM100DJF/7	FERD30SM100DJF/B	F30SM 100	
STPS30120DJF-TR	PS30120DJFR6%7	PS30120DJFR6H%B	PS30 120	
STPS30170DJF-TR	PS30170DJFR6%7	PS30170DJFR6H%B	PS30 120	
STPS3045DJF-TR	PS3045DJFR6%7	PS3045DJFRH%B	PS30 45	
STPS30M100DJF-TR	PS30M100DJFR6%7	PS30M100DJFRH%B PS30M 10		

STMicroelectronics ADG – Discrete and Filter Division¹ BU Rectifiers

(1) ADG: Automotive and Discretes Group

STMicroelectronics ADG – Discrete and Filter Division¹ BU Rectifiers

(1) ADG: Automotive and Discretes Group

Customer's feedback

Please contact your local ST sales representative or quality contact for requests concerning this change notification.

Absence of acknowledgement of this PCN within 30 days of receipt will constitute acceptance of the change. Absence of additional response within 90 days of receipt of this PCN will constitute acceptance of the change.

Qualification program and results

19015QRP Attached

Reliability Evaluation Report Qualification of PowerFLAT[™] 6x5 at Subcontractor in China

Ge	neral Information	L	ocations
Product Line	Rectifiers	Wafer fab	ST CATANIA – ITALY ST SINGAPORE
Product Description	Field Effect Rectifiers Power Schottky Rectifiers		
	FERD15S50DFJ-TR FERD20U50DJF-TR	Assembly plant	SUBCONTRACTOR –CHINA (998G)
Product perimeter	FERD30M100DJF-TR STPS3045DJF-TR STPS30M100DJF-TR STPS30120DJF-TR STPS30170DJF-TR	Reliability Lab	ST TOURS - FRANCE
Product Group	ADG		
Product division	Discrete and Filter Division		
Package	PowerFLAT [™] 5x6	Reliability assessment	Pass
Maturity level step	Qualified		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comments
1.0	04-Dec-2018	7		N Julien MICHELON -	FERDxxx qualification: FERD15S50DFJ-TR / FERD20U50DJF-TR FERD30M100DJF-TR
2.0	29-Jan-2019		Isabelle BALLON		Power Schottky qualification: STPS3045DJF-TR /STPS30M100DJF-TR STPS30120DJF-TR / STPS30170DJF-TR

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1		CABLE AND REFERENCE DOCUMENTS				
		BILITY EVALUATION OVERVIEW				
-	3.1	OBJECTIVES	4			
	3.2	Conclusion				
4	DEVIC	E CHARACTERISTICS	5			
	4.1	DEVICE DESCRIPTION	5			
	4.2	CONSTRUCTION NOTE	5			
5	TESTS	RESULTS SUMMARY	6			
	5.1	Test vehicle	6			
		TEST PLAN AND RESULTS SUMMARY				
6	ANNEXES					
	6.1	TESTS DESCRIPTION	7			

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description	
JESD 47	Stress-Test-Driven Qualification of Integrated Circuits	
JESD 94	Application specific qualification using knowledge based test methodology	
JESD 22	Reliability test methods for packaged devices	

2 GLOSSARY

SS	Sample Size	
HTRB	High Temperature Reverse Bias	
тнв	Temperature Humidity Bias	
тс	Temperature Cycling	
UHAST	Unbiased Highly Accelerated Stress Test	
RSH	Resistance to Soldering Heat	
SD	Solderability	
DBT	Dead Bug Test	
GD	Generic Data	
PC	Pre-conditioning (before test)	

3 RELIABILITY EVALUATION OVERVIEW

3.1 **Objectives**

The objective of this report is to qualify PowerFLAT[™] 5x6 at subcontractor in China (998G).

The involved products are listed in table here below:

Commercial Product				
FERD15S50DFJ-TR				
FERD20U50DJF-TR				
FERD30M100DJF-TR				
STPS3045DJF-TR				
STPS30M100DJF-TR				
STPS30120DJF-TR				
STPS30170DJF-TR				

The reliability test methodology used follows the JESD47-H: « Stress Test Driven Qualification Methodology ». The following reliability tests ensuing are:

- TC to ensure the mechanical robustness of the products.
- HTRB to evaluate the risk of contamination from the resin and the assembly process versus the die layout sensitivity.
- THB, UHAST to check the robustness to corrosion and the good package hermeticity.
- RSH, Solderability and DBT to check compatibility of package with customer assembly.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. Reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the robustness of the products and safe operation, which is consequently expected during their lifetime.

<u>4</u> DEVICE CHARACTERISTICS

4.1 **Device description**

Refer to products datasheets.

4.2 Construction Note

	FERD15S50DJF – FERD20U50DJF – FERD30SM100DJF
Wafer/Die fab. information	
Wafer fab manufacturing location	ST Catania (ITALY)
Technology / Process family	Field Effect Rectifier
Wafer Testing (EWS) information	
Electrical testing manufacturing location	ST SINGAPORE
Assembly information	
Assembly site	Subcontractor in CHINA (998G)
Package description	PowerFLAT [™] 5x6
Molding compound	ECOPACK [®] 2 compliant component
Lead finishing/bump solder material	Pure Tin
Final testing information	
Testing location	Subcontractor in CHINA (998G)

	STPS3045DJF-TR / STPS30M100DJF-TR / STPS30120DJF-TR / STPS30170DJF-TR
Wafer/Die fab. information	
Wafer fab manufacturing location	ST SINGAPORE
Technology / Process family	Power Schottky
Wafer Testing (EWS) information	
Electrical testing manufacturing location	ST SINGAPORE
Assembly information	
Assembly site	Subcontractor in CHINA (998G)
Package description	PowerFLAT [™] 5x6
Molding compound	ECOPACK [®] 2 compliant component
Lead finishing/bump solder material	Pure Tin
Final testing information	
Testing location	Subcontractor in CHINA (998G)

5 TESTS RESULTS SUMMARY

5.1 Test vehicles

Lot #	Commercial Product	Package	Comments
Lot 1	FERD20U50DJF-TR		
Lot 2	FERD30SM100DJF-TR	PowerFLAT [™] 5x6	Qualification lots
Lot 3		Poweri LAT 5x0	Quaincation 1015
Lot 4	FERD15S50DJF-TR		
Lot 5	STPS30170DJF-TR	PowerFLAT™ 5x6	Qualification lot (higher voltage)

Detailed results in below chapter will refer to these references.

5.2 Test plan and results summary

Test	Std ref.	Conditions	Steps /	SS	Failure/SS				
1000	ota ron.	Duration			L1	L2	L3	L4	L5
Die Orienteo	l Tests								
HTRB	MIL-STD-750-1 M1038-Method A	VR = 80V (0.8*VRRM) Tj=110°C (max avoiding thermal runaway)	1Khrs	210		0/77	0/56		0/77
Package Orie	ented Tests								
тс	JESD 22A-104	-65/+150°C 2cy/h	500cy	307	0/77	0/77		0/77	0/76
ТНВ	JESD22 A-101	85°C; 85% RH VR=80V (0.8*VRRM)	1Khrs	154		0/77			0/77
UHAST	JESD22 A-118	130°C 85% RH	96hrs	154		0/77			0/77
RSH	JESD22 B-111 (SMD)	THS 85%RH / 85°C 168hrs Sn/Pb dipping 260°C	-	30	0/30 (Generic data)				
		Wet ageing SnPb bath 220°C	-	10	0/10 (Generic data)				
SD	JESD22 B-102	Wet ageing SnAgCu bath 245°C	-	10		0/10 (Generic data)			
30	JESD22 B-102	Dry ageing SnPb bath 220°C	-	10	0/10 (Generic data)		data)		
		Dryt ageing SnAgCu bath 245°C	-	10		0/10	(Generic	data)	
DBT	DM00112629 (ST internal)	IR reflow after flux deposition	-	30	0/30				

Note: Package-oriented tests (except RSH, SD and DBT) are submitted to preconditioning (PC) before test.

<u>6</u> <u>ANNEXES</u>

6.1 Tests description

Test name	Description	Purpose						
	Die Oriented							
HTRB High Temperature Reverse Bias	The diode is biased in static reverse mode at targeted junction temperature.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.						
	Package Oriented							
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.						
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.						
UHAST Unbiased Highly Accelerated Stress Test	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.						
RSH Resistance to Solder Heat	Package is dipped by the leads in a solder bath after initial wet ageing (for SMDs only). Assessment by electrical test + no external crack	To simulate wave soldering process and verify that package will not be thermally damaged during this step.						
SD Solderability	Ageing + dipping in a solder bath. Assessment by visual inspection of the leads.	To ensure good wettability of the leads						
DBT Dead Bug Test	Leads are covered with soldering flux and are submitted to IR reflow. Assessment by visual inspection of the leads	To ensure good wettability of the leads						